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Twente Turbulent Taylor-Couette (T3C)



Ideal systems to study turbulent 
boundary layer - bulk 

interaction





Taylor-Couette: parameter space
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Rich flow structures
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T3C: parameter space
• Independently&rota3ng&cylinders

& & IC&20&Hz,&OC&10&Hz

• Max.&Reynolds&number

& &&counter&rota3on:&&3.4&x&10
6

& &&pure&IC&rota3on:& &&2.0&x&10
6

& &&pure&OC&rota3on:&&1.4&x&10
6
&

• Variable&radius&ra3o&η

• 111&liters&of&liquid

• 1K/minute&hea3ng!!

• 20&kW&cooling
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The status now



Navier-Stokes equation & BCs
Lab frame



Change of frame of reference:
Outer cylinder rotation as Coriolis force

Lab frame Rotating frame



Outer cylinder rotation as Coriolis force
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Navier-Stokes equation in dimensionless form:



This suggests as control parameters:

Ta

Ro-1

Reo

Rei

(fixed η)



Explore control parameters numerically

thanks to Prace project ...

co-rot co-rot

counter-rot

counter-rot



First: Fixed outer cylinder: 
Ro-1=0   or   Reo=0

Then increase Ta or Rei



Global flow properties: 
Angular velocity transfer Nuω

Nuω=Jω/Jω,lam

Conserved: angular velocity flux

B. Eckhardt, S. Grossmann, and D. Lohse, J. Fluid Mech. 581, 221 (2007)



RB   

Nu=J/Jconductive

TC   

Nuω=Jω/Jω,lam

Conserved: heat flux Conserved: angular velocity flux

Driven by: Driven by:



DNS @ Twente

Lewis et al., 1999 (EXP)
Brauckmann et al., 2013 (DNS)

EXP @ Twente

Several transitions in Nuω 



 Ta~3·106: very sharp transition
Ta~2·108 : transition to ultimate regime!

Several transitions in Nuω 



Transition to ultimate regime =
Transition of BL  from 

(laminar) Prandtl-Blasius type 
to 

(turbulent) Prandtl-von Karman type

Prandtl Blasius Prandtl von Karman

Ta = 5 x 108



How do the 
corresponding flow 
patterns look like? 



Small Ta: laminar Taylor rolls (time dependent) 



Transition to turbulent Taylor vortices at Ta ~ 3·106 



Turbulent Taylor 
vortices, but 

laminar-type BL

Ta = 5 x 107

Ro-1 = 0

η = 0.714



Transition to 
turbulent BL at 

Ta = 2 x 108 :
“ultimate 

turbulence”

Ta = 4 x 109

η = 0.714

Ro-1 = 0



Large scale structures 
become less beyond 
transition

Attempt of quantification: 
axial velocity spread ΔU  



BL beyond transition to turbulence: 
Logarithmic profile develops

NOT the azimuthal velocity uθ,
 but the angular velocity ω due to the cylindrical shape



NOT the azimuthal velocity uθ,
 but the angular velocity ω due to the cylindrical shape

BL beyond transition to turbulence: 
Logarithmic profile develops



How do transitions change with 
outer cylinder rotation Ro-1≠ 0? 

Co-rotation  Reo> 0  or Ro-1 > 0 :
flow stabilization

Weak counter-rotation  Reo< 0  or Ro-1 < 0 :
flow destabilization!

Strong counter-rotation  Reo<<  -|Reo|<0  or Ro-1 << 0 :
flow stabilization again

Expectation:



Global flow properties: Nuω 

Transition to ultimate regime looks universal
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Global flow properties:
Nuω (Ro-1) and “optimal” TC turbulence

R. Ostilla-Monica et al., JFM 747, 1-29 (2014)

1/Roopt = -0.22



Flat bulk means plumes 
enter bulk with high energy

Gradient in the bulk 
means that plumes 
enter bulk with lower 
energy

Local flow organization: ω-profiles 

Ta = 1010η = 0.714,

co-rotation

counter-rotation,
close to optimal TC



Local flow organization: ω-profiles 
Ta = 1010η = 0.714,

Ro-1 = 0.2 Ro-1 = -0.23 Ro-1 = -0.40
co-rotation: gradient 
in center due to good 

plume mixing

“Optimal TC”: 
flat profile; less plume 

mixing

Ra-stable zone at 
outer cylinder

Comparison with experiment:

differences due to axial 
dependence for 
counter-rotation 



Stronger plumes imply: rolls survive at higher Ta

Rolls = more convective transport = transport optimum!

Local flow organization: <ω>t,θ 

(co-rotation) (close to opt. TC)



Local flow organization: <ω>t,θ 
Ta = 1010η = 0.714,

Ro-1 = 0.2 Ro-1 = -0.22 Ro-1 = -0.40
co-rotation: no axial 
dependence: weak 

plumes, good mixing

“Optimal TC”: 
axial depence, rolls; 

strong plumes

Rolls at inner cylinder, 
but Ra-stable zone at 

outer cylinder



Largest ΔU in ultimate regime at optimum Ro-1!

Good transport 
at optimal TC due 
to the surviving 
roll structure

Quantification of roll structure by 
axial velocity spread ΔU  



Flow features in 
strongly counter-
rotating regime

Ta = 4 x 109

Ro-1 = - 0.4

η = 0.714



Position of neutral surface <ω(r)>t,θ,z =0

Ta = 1010η = 0.714,

Neutral line 
migrates inwards 
with increasing 

counter-rotation



Summary: Phase diagram

optimal 
TC

co-
rot

counter-
rot



Summary: Phase diagram

Andereck et al.



Andereck et al.



Third axis in 
parameter space: 
radius ratio η

Two plates (plane Couette)

Vanishing inner cylinder

How does the phase space depend on 
the radius ratio?

Re
inner

Re
outer

η (radius&ra3o)



Can one see universal scaling for other values of η?

Ultimate regime scaling is found for all η!

γ = 0.38 also found at η=0.5 by Merbold et. al, PRE (2013)

Ostilla, Huisman, Jannink, van Gils, Verzicco, Grossmann, Sun & Lohse, J. Fluid Mech. 747, 1-29 (2014)



When does the transition happen ?

η=0.909, Ta~3·108 - also seen in Ravelet et. al (2011)

η=0.5, Ta~1010 - also seen in Merbold et. al (2013)

similar for larger η -- later for smaller η

Ro-1 = 0



Analogy between Ro-1 and η: effect on profile

Bulk gradient can be controlled also through η!

Large η has the best transport properties in ultimate regime

Ro-1 = 0



Transport from large Ta 
experiments at different η

Large η has the best transport properties in ultimate regime



Increasing η -> more pronounced roll structure -> better transport 

Just as decreasing 1/Ro in the weakly counter-rotating regime 

Ta = 1010 Ro-1 = 0



Phase diagram of η-dependence

Ro-1 = 0

optimal 
transport



Preliminary conclusions

(here Ro-1 = 0)

(here η = 0.714)



Startup behavior (inner cylinder) 
in numerics and experiments

(outer cylinder at rest)



Ta = 108

Ro-1 = 0η = 0.714



But,this,is,not,the,full,story,yet...



Optimal transport and 
turbulent structures



Designed to measure torque

Previously:

Torque sensor

A co-axial torque transducer



Previously:
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Optimal transport



Previously:

for every a we vary Ta and measure Nuω
measure 3 hour per ‘a’
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Measurement procedure
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Measuring Nu with increasing a

aopt~0.33
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Previous
Increasing a, Ta = 10e12
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Measuring Nu with increasing/decreasing a
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Multiple turbulent states appear around the optimal a
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Global transport and internal flow
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Local flow velocity 
also shows two 

states !

Flow structures?
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Multiple turbulent states !!!!



RB flow in classical turbulent state

sharp drop in any of the flow strengths accompanied the
orientational changes of flow at the three heights, which
themselves are also relatively slow. Several features are note-
worthy. One is that before the transition the two-roll mode
has a structure of a small roll on top of a big one, while after
the transition it becomes an upper-big and lower-small struc-
ture. Another feature is that it is the SRM that is now tran-
sitory, and the transition may be viewed as a way for the flow
to switch between the two alternative structures of the two-
roll mode via a SRM.

The second example of flow mode transition in the !
=1 /3 case is shown in Fig. 9, which is more typical for this
geometry. It is seen that before t=100 s the flow is in the
SRM, and it may have experienced a brief two-roll state near
t=400 s. But in most of the other times the flow is in neither
SRM nor DRM. As we will see later this transition state
accounts for a significant percentage !in time" of the flow.
One may speculate that higher order modes, like a triple-roll
structure, may also exist in the aspect ratio 1 /3 cell. The fact
that they were not identified in the present study may be due
to the limitation of the spatial resolution of the experimental
technique we used.

From above we have seen the two alternative structures
of the DRM for the !=1 /3 geometry—the upper-small and

lower-big double-roll structure and the upper-big and lower-
small double-roll structure !Fig. 8", but not for the other two
geometries. One naturally wonders whether a top-big and
bottom-small structure also exists for the !=1 and 1 /2 ge-
ometries. And does equal sized double-roll structure exist in
these three types of cells? To answer these questions, we
study in detail the fine structure of the flow when it is in
DRM. We present these results in Appendix A to make the
flow of the main body of the paper smooth.

B. The relative weights of different flow modes

To quantitatively characterize the relative weight of each
flow mode, we define that the flow is in DRM when
#"##bot,top$120°, in SRM when none of #"##bot,top, #"##bot,mid,
and #"##top,mid exceeds 60°. In other times the flow is in
transition. We study the percentage of time the flow spends
in that mode for the duration of the measurement. These are
denoted as ws for the SRM and wd for the DRM, which are
plotted, respectively, in Figs. 10!a" and 10!b" as functions of
Ra and for the three values of !. Note that ws and wd do not
add up to 100%, the difference is the time the flow spends in
transition among different modes. It is seen that for !=1 and
1 /2, ws clearly increases with Ra. This means that with in-
creasing Ra the single-roll flow structure in these two geom-
etries becomes more robust and coherent.46 For !=1 /3, ws
shows a slight increase at first and then appears to saturate.
Since both ws and wd have weak dependences on Ra, we
calculate their average values $ws% and $wd% for all Ra and for
each aspect ratio, respectively. The average time $wt% that the
flow spends in transition among the different modes is also
calculated. The results are $ws%=87.1%, $wd%=0.8%, and
$wt%=12.1% for !=1, 69.5%, 7.9%, and 22.6% for !=1 /2,
and 26.7%, 34.1%, and 39.2% for !=1 /3, respectively.
These values are also plotted as functions of ! in Fig. 11.
The figure shows clearly that for !=1 and 1 /2, the single-
roll structure is the dominant flow mode and on average the
overall flow is of a single-roll structure for these geometries.
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mean flow circulation time &0=267 s". The cartoons depict the flow structure
before, during, and after a flow mode transition, with arrows indicate the
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Figure 9. (Colour online) A typical transition from an SRS to a DRS and back. (a1–a5)
Schematic diagrams of a transition sequence. The arrows point to the time interval of the
data in (b) to which each diagram corresponds. (b) The time evolution of the difference in
the azimuthal orientation (θt − θb)/2π of the LSC (solid line, left ordinate), and of the LSC
temperature amplitudes (right ordinate) δt (dotted line, blue online), δm (dash-dotted line, green
online) and δb (dashed line, red online). (c) Time evolution of (θt − θb)/2π (solid circles, left
ordinate) and θm/2π (solid squares, green online; right ordinate). The origin of the time axis is
arbitrary.

For the SRS, we expect that all three temperature amplitudes δk, k = b, m, t are
of comparable size and that all θk are equal to each other except for reasonable
fluctuations (see § 7.6), i.e. differ from each other by significantly less than π at least
most of the time. On the other hand, for the DRS we expect δm to be much smaller
than δt and δb because at the horizontal midplane the flow is more or less lateral
(see figure 9a3) and thus does not create a large azimuthal temperature variation.
Furthermore, for the DRS we expect θb and θt to differ from each other by π (again,
except for fluctuations) because at the azimuthal location of maximum up-flow for the
bottom roll, there is maximum down-flow for the top roll. To enable the automated
identification of the states, we used the criteria introduced by Xi & Xia (2008b) and

Xi & Xia, Phys. Fluids, 20, 
055104 (2008)

Weiss & Ahlers, J. Fluid Mech. 
676, 5 (2011)

Multiple states: 

continuous 
switching between 
two different roll 
states with different 
heat transfer 
properties



Rotating spherical Couette flow

seen in surface waves excited by turbulent swirling flows in a
Taylor Couette geometry with a free surface.43 Von Kármán
flow in a cylinder between two independently rotating impel-
lers has exhibited multi-stability and hysteresis of the mean
flow despite extremely high fluctuation levels.44–46 Magneto-
hydrodynamic experiments in the von Kármán geometry have
succeeded in producing dynamos that show reversals of the
generated magnetic field.47,48 The L-H transition in turbulent
tokamak plasma confinement devices involves the formation
of a wave-driven zonal flow transport barrier that greatly
enhances confinement of the plasma.49,50 However, this bar-
rier eventually breaks down in a burst that can damage the
confinement device.51 Understanding this particular form of
turbulent multiple stability and its control is an important issue
in sustained confinement of fusion plasmas.

Spherical Couette flow is a dynamically rich system in
both laminar and turbulent regimes. Our apparatus, initially
designed, constructed, and eventually destined for magneto-
hydrodynamic experiments in molten sodium metal, presents
a unique opportunity to measure the properties of hydrody-
namic turbulence in this geometry, including transition phe-
nomena between multiple turbulent states. We operate in a
novel region of parameter space, simultaneously achieving
moderately high Rossby number and low Ekman number.
This regime can currently only be directly accessed by
experiments and naturally occurring flows and has not been
the focus of previous purely hydrodynamic studies. Further-
more, we are able to make quantitative measurements in the
rotating frame, something that can be quite difficult in
smaller apparatus.

II. APPARATUS

The three meter apparatus allows independent rotation
of the inner and outer spheres. Instrumentation in the rotating
frame allows measurements of velocity, wall shear, and pres-
sure, as well as the torques required to maintain the boundary
speeds. Fig. 1 is a schematic sketch of the apparatus. The
stainless steel outer vessel has an inner diameter of
2:92 6 0:005 m and is 2.54 cm thick. It is mounted on a pair
of spherical roller bearings held by a frame. The vessel top
lid is installed in a 1.5 m diameter cylindrical flanged open-
ing, and the inside lid surface is curved to complete the outer
spherical boundary. The lid has four 13 cm diameter instru-
mentation ports centered at 60 cm cylindrical radius. Due to
design constraints aimed at safe operation with liquid sodium
metal as the working fluid, these four ports are the only pene-
trations through the outer boundary, and so are the only loca-
tion from which we may make direct flow measurements.
Port inserts hold measurement probes nearly flush with the
inner surface of the outer sphere.

The inner sphere has a diameter of 1.02 6 0.005 m and
is supported on a 16.8 cm diameter shaft held coaxial with
the outer shell by bearings at the bottom of the outer sphere
and in the top lid. The inner sphere is driven from a 250 kW
electrical motor through a calibrated Futek model TFF600
torsional load cell. The measured torque includes the torque
from a pair of lip seals which add some confounding error.
The outer sphere is driven by a 250 kW induction motor

mounted to the support frame. A timing belt reduction drive
with a 25:3 ratio couples the outer sphere motor to a toothed
pulley on the lid rim.

Motor speeds are controlled to better than 0.2% by vari-
able frequency drives, and optical encoders monitor the inner
and outer sphere speeds. The drives estimate the motor tor-
que from electrical current measurements and the torque esti-
mate supplied by the inner motor drive agrees well with the
calibrated strain-gauge torque sensor at motor speeds above
about 2 Hz. This supports the use of the outer motor drive’s
reported torque as a reasonable estimate of the total torque
required to drive the outer sphere, provided that the outer
sphere angular speed is above about 0.24 Hz, as it is for the
data presented here. As the outer sphere speed is lowered
below 0.24 Hz, the outer drive’s reported torque becomes
increasingly dominated by motor magnetizing current. The
torque exerted by aerodynamic and bearing drag on the outer
sphere is typically larger than the working fluid’s contribu-
tion. However, this drag is repeatable and can be subtracted
off by measuring the torque demanded with no differential
rotation.

A rotating computer acquires data from sensors in the
instrumentation ports at a sampling rate of 512 Hz, recording
data on a lab frame computer using a wireless ethernet con-
nection. Sensors include a Dantec model 55R46 flush mount
shear stress sensor driven by a TSI model 1750 constant tem-
perature anemometer and three Kistler model 211B5 pres-
sure transducers. The three pressure transducers are installed
in three ports 90! apart on the 60 cm radius port circle. A
thermocouple is used to monitor the fluid temperature.

FIG. 1. A schematic of the apparatus showing the inner and outer sphere
and locations of measurement ports in the vessel top lid at 60 cm cylindrical
radius (1.18 ri). Data from sensors in the ports are acquired by instrumenta-
tion, including an acquisition computer, bolted to the rotating lid and wire-
lessly transferred to the lab frame. Also shown is the wireless torque sensor
on the inner shaft.
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and Ro¼ 2.13. The onset of the high torque state is abrupt,
taking on the order of 10 rotations of the outer sphere. The
torque overshoots the high state mean value at high torque
onset by 10-15%.

The end of the high torque state exhibits a slow decay of
the torque to the low torque value, approximately exponen-
tial with a time constant of 40 rotations of the outer sphere.
In addition to the full transitions between the two torque lev-
els, there are “excursions” where the torque decays toward
the low mean value or rises toward the high mean value
without fully reaching the other state.

The qualitative bi-stability in Fig. 3 can be expressed
quantitatively in the bimodal probability distribution of the
torque shown in Fig. 4. The division of data into high torque

and low torque states was done manually so as to exclude
the transition regions. The resulting individual distributions
of G for the high and low states based on this conditioning
are shown in Fig. 4, as well as the full distribution. There is a
small region of overlap in the H and L state individual distri-
butions due to the difference drawn between “transitions”
and “excursions.” The same manual division in states is used
throughout the paper to condition other data on state. In
Fig. 4, the high state mean torque is 1.4 times that in the low
state. The torque fluctuations in the high torque state are con-
siderably higher than in the low; the standard deviation of
the high state torque is 1.8 times that in the low state. The
low frequency fluid fluctuations responsible for this are also
observed in the velocity and wall shear.

In both Figs. 3 and 4, the torque data have been numeri-
cally low pass filtered. In Fig. 3, the cutoff frequency is 0.05
Hz. In Fig. 4, the filter cutoff frequency was chosen to be 0.5
Hz, where the fluid torque power spectrum appears to cross
the mechanical vibration noise floor. In this way, we retain the
fastest measurable hydrodynamically relevant fluctuations.

The interval between transitions is somewhat irregular.
Over 45 transitions at the parameters in Fig. 3, we observe
the statistics shown in Table I. We also observe a Ro-
dependence of the probability that the system is in one state
or the other. Above a threshold value of Ro, we begin to
observe state transitions to the low state and the high torque
state becomes less likely as Ro increases. Fig. 5 shows the
probability that the system is in the high or low torque state
for 4000 rotations of the outer sphere across the first bistable
range of Ro. At values of Ro where transitions were not
observed for more than 4000 rotations of the outer sphere, a
probability of one or zero was assigned. The probability that
the system was in the low state was fit to

PrðLÞ ¼
0 : Ro < Roc

1$ expð$cðRo$Roc

Roc
ÞÞ : Ro > Roc

!
; (8)

with c ¼ 8:25 and Roc¼ 1.80. The high torque probability is
given by Pr(H)¼ 1$Pr(L). The physical implication inherent
in the exponential form is that there is no upper threshold
where the high torque state becomes impossible. Instead, it
only becomes less likely as Ro is increased. However, the
lower threshold for state transitions is well defined at Roc.

IV. FLUID ANGULAR MOMENTUM

The torque measurements presented so far only consid-
ered the torque on the inner sphere. To see the complete pic-
ture of the angular momentum transport in the system, we
examine the torque on both boundaries. The torque on the

FIG. 3. Time series of G at fixed Ro¼ 2.13 and E ¼ 2:1 % 10$7, with time
made dimensionless by the outer sphere rotation period. The raw torque sig-
nal has been numerically low pass filtered (fc¼ 0.05 Hz, 15 rotations of the
outer sphere).

FIG. 4. Probability density of the dimensionless torque at Ro¼ 2.13 and
E ¼ 2:1 % 10$7. The full, unconditioned distribution is denoted by small
points. Solid circles denote conditioning on low torque state, and open
circles on the high, with Gaussian solid and dashed curves for the low and
the high, respectively. The mean and standard deviation of the low torque
state data are hGi ¼ 6:82 % 1010 and rG ¼ 2:74 % 109. In the high torque
state, they are hGi ¼ 9:53 % 1010 and rG ¼ 5:02 % 109. The data were
low pass filtered at fc¼ 0.5 Hz to remove the high frequency noise caused
by mechanical vibration.

TABLE I. Statistics of the interval between high torque onsets. Dt0H is the

time interval between two subsequent high torque onsets made dimension-
less by Xo=2p, so the time interval is measured in outer sphere rotations.

Ro¼ 2.13, E ¼ 2:1 % 10$7.

Dt0H
" #

rDt0H
Max( Dt0H) Min( Dt0H )

717 313 1917 390
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von Kármán flow with curved blades

Multistability and Memory Effect in a Highly Turbulent Flow: Experimental Evidence
for a Global Bifurcation
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We report experimental evidence of a global bifurcation on a highly turbulent von Kármán flow. The
mean flow presents multiple solutions: the canonical symmetric solution becomes marginally unstable
towards a flow which breaks the basic symmetry of the driving apparatus even at very large Reynolds
numbers. The global bifurcation between these states is highly subcritical and the system thus keeps a
memory of its history. The transition recalls low-dimension dynamical system transitions and exhibits
very peculiar statistics. We discuss the role of turbulence in two ways: the multiplicity of hydro-
dynamical solutions and the effect of fluctuations on the nature of transitions.
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Nonlinear systems generally present multiple solutions
and various transitions between them. Moreover, stability
and transitions are influenced by the presence of noise
and/or fluctuations. In the field of turbulence, the question
of multistability of turbulent flows, for example, in tor-
nadoes [1,2], delta-wing flow [3], wakes [4], and vortex
breakdown [5], remains open and unsolved. While mul-
tiple analytical or numerical solutions are often encoun-
tered for the Navier-Stokes equation at even moderate
Reynolds number (e.g., for swirling flows [2,5–8]), these
solutions are generally neither experimentally relevant,
nor stable at very high Reynolds number. Furthermore,
turbulent flows at very high Reynolds number are gener-
ally expected to statistically respect the basic symmetries
of their driving apparatus. Indeed, even if bifurcations
and symmetry breaks occur on the way to turbulence, the
fully developed turbulent state is known to restore the
broken symmetries, in the limit of infinite Reynolds
number and far from boundaries [9]. In this Letter, we
experimentally study the multistability of a turbulent
von Kármán flow between two counterrotating disks in
a finite vessel at very high Reynolds number. This system
undergoes a subcritical global bifurcation between turbu-
lent states characterized by mean flows of different to-
pology and symmetry. These turbulent states coexist at
high Reynolds number and can be ‘‘prepared’’ specifi-
cally; i.e., they keep a memory of the system history.
Since these states are highly fluctuating turbulent states,
we also address the question of the role of the fluctuations
for such a transition. Actually, the effect of an external
noise on an existing transition is well documented [10],
but the global bifurcation reported here does take place
only over an already fluctuating turbulent regime. Does
fluctuation trigger the bifurcation as multiplicative noise
does for nonlinear oscillators [11] and turbulent ! effect
does for dynamo action [12]?

Experimental setup.—We call von Kármán-type flow
the flow generated between two coaxial counterrotating
impellers in a cylindrical vessel. The cylinder radius and

height are, respectively, R ! 100 mm and Hc ! 500 mm.
We use bladed disks to ensure inertial stirring. Most of
the inertially driven von Kármán setups studied in the
past dealt with straight blades [13,14]. In this Letter, the
impellers consist of 185 mm diameter disks each fitted
with 16 curved blades: curvature radius 50 mm, height
20 mm (Fig. 1). The distance between the inner faces of
the disks is H ! 180 mm, which defines a working space
for the flow of aspect ratio H=R ! 1:8. With curved
blades, the directions of rotation are no longer equivalent.
We rotate the impellers clockwise (with the concave face
of the blades). Four baffles (10" 10" 125 mm) can be
added along the cylinder wall.

The impellers are driven by two independent brushless
1.8 kW motors, with speed servo loop control. The motor
rotation frequencies f1; f2 can be varied independently in
the range 0–15 Hz. An experiment is thus characterized

by two numbers: f !
!!!!!!!!!!!!!!!!!!!!!!!!!

#f21 $ f22%=2
q

measuring the inten-
sity of the forcing and " ! #f2 & f1%=#f1 $ f2% measur-
ing the speed dissymmetry ( & 1 ' " ' 1). For exact
counterrotation, f1 ! f2 ! f and " ! 0. The speed servo
loop control ensures a precision of 0.5% on f, and an
absolute precision of (0:002 on " for small values.

The working fluid is water, thermoregulated within
(1 K. Velocity fields are measured by laser doppler ve-
locimetry (LDV). Torques are measured as an image of
the current consumption in the motors given by the servo
drives and have been calibrated by calorimetry. For a
typical frequency f ! 4 Hz at 35 )C, the integral
Reynolds number is Re ! 2#fR2$&1 ’ 3" 105 and the

f1

1

f2

2
R

H

FIG. 1. Sketch of the experimental setup and of the impellers
blade profile. The arrow indicates the positive rotation sense.
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velocity fluctuation level is of order 30%: the flow is
highly turbulent.

The von Kármán flow phenomenology is the following.
Each impeller acts as a centrifugal pump: the fluid rotates
with the impeller and is expelled radially. It is pumped in
the center of the impeller. In the exact counterrotating
regime, the flow is divided into two toric cells separated
by an azimuthal shear layer. The problem (equation and
boundary conditions) is invariant under rotations of !
(R!) around any radial axis passing through the center of
the cylinder. The velocity field is expected to be R!
invariant.

A ‘‘statistical’’ symmetry breaking.—In our high
Reynolds number regime, the flow is highly turbulent.
For instance the rms value of the velocity is of the same
order of magnitude as the mean value. In Fig. 2 (left), we
present a map of the mean part of the exact counter-
rotation flow measured by LDV. Two cells are observed,
and the flow is R! invariant: the symmetries are statis-
tically restored [9]. The mean angular momentum of the
fluid is equal to zero: the two impellers produce the same
mean torque to maintain the flow. This situation is well
known and documented.We label this symmetric state !s".

However, with our curved blades, we observe for small
" a global bifurcation of the flow after a certain time tbif :
both mean velocity field and torques display dramatic
changes (Fig. 3). The two torques are suddenly 4 times
larger and are no longer equal. The mean flow exhibits
only one cell (Fig. 2, right). In the bulk, the fluid is
pumped toward impeller 1 without rotation. Then the fluid
is expelled radially and starts spiraling along the cylinder
until it meets impeller 2, which rotates in the opposite
direction. It is abruptly stopped and reinjected near the
axis. We label this state !b1". A third state !b2" is deduced
from !b1" by exchanging the roles of impellers 1 and 2. In
bifurcated states!b1" or !b2", the fluid is globally in rota-
tion: the mean angular momentum is not zero.

Finally, three states are observed: the canonical
R! invariant (in a statistical sense) state !s" and two

bifurcated states which break the R! symmetry at " #
0 but are the images one of the other by R!. We detail in
the next section the transitions between these different
states.

Hysteresis loops.—The difference between the two tor-
ques characterizes the different states. We have checked
that, as expected for so high a Reynolds number [9], the
torque T given by one impeller for a given !f; "" does not
depend on Re and scales as T!f; "" # Kp!""#R5!2!f"2
[14], with # the fluid density and Kp a dimensionless
power coefficient.

In Fig. 4, we plot the dimensionless difference !Kp

between the two torques versus " for several configura-
tions. For straight blades, we observe a continuous curve
from " # $1 to " # 1 [Fig. 4(a)] with two transitions
between one- and two-cell flows at " # %0:13. For im-
pellers with curved blades and no baffles on the cylinder
wall, we observe the three states in Fig. 4(b). For " # 0,
we recognize state !s" (!Kp # 0) and both bifurcated
states !b1" and !b2". The state !s" branch is almost reduced
to one point and can be reached only by starting the two

FIG. 2. Dimensionless mean velocity field measured at " # 0
by LDVover 120 integral turnover times by grid point to ensure
good convergence; f # 2 Hz (Re # 1:5& 105). Left: symmet-
ric state !s". Right: bifurcated state !b1". Space coordinates in
units of R. Gray code stands for azimuthal velocity. Isolines are
distant of 0.2 and the gray code saturates in the right map. Bold
lines indicate level zero.
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FIG. 3. Time series of dimensionless torque showing the
bifurcation !s" ! !b2", for " # 0:0204, f # 4:08 Hz. Left:
torque on impeller 1. Right: torque on impeller 2. The bifur-
cation time is the time when the torque on impeller 1 reaches
140% of the mean value for the symmetric state !s".
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FIG. 4. Dimensionless torque difference !Kp versus " for Re
in the range 2–8& 105. Straight blades (a) exhibit continuous
transition from one-cell flow to two-cells flow for " # %0:13
(vertical lines). Curved blades without (b) or with (c) baffles
along cylinder wall show subcritical transitions between
symmetric/two-cell !s", (!), and bifurcated/one-cell !b1",
!b2" states (').
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Global Bifurcation in a 
highly turbulent von 
Kármán flow

velocity fluctuation level is of order 30%: the flow is
highly turbulent.

The von Kármán flow phenomenology is the following.
Each impeller acts as a centrifugal pump: the fluid rotates
with the impeller and is expelled radially. It is pumped in
the center of the impeller. In the exact counterrotating
regime, the flow is divided into two toric cells separated
by an azimuthal shear layer. The problem (equation and
boundary conditions) is invariant under rotations of !
(R!) around any radial axis passing through the center of
the cylinder. The velocity field is expected to be R!
invariant.

A ‘‘statistical’’ symmetry breaking.—In our high
Reynolds number regime, the flow is highly turbulent.
For instance the rms value of the velocity is of the same
order of magnitude as the mean value. In Fig. 2 (left), we
present a map of the mean part of the exact counter-
rotation flow measured by LDV. Two cells are observed,
and the flow is R! invariant: the symmetries are statis-
tically restored [9]. The mean angular momentum of the
fluid is equal to zero: the two impellers produce the same
mean torque to maintain the flow. This situation is well
known and documented.We label this symmetric state !s".

However, with our curved blades, we observe for small
" a global bifurcation of the flow after a certain time tbif :
both mean velocity field and torques display dramatic
changes (Fig. 3). The two torques are suddenly 4 times
larger and are no longer equal. The mean flow exhibits
only one cell (Fig. 2, right). In the bulk, the fluid is
pumped toward impeller 1 without rotation. Then the fluid
is expelled radially and starts spiraling along the cylinder
until it meets impeller 2, which rotates in the opposite
direction. It is abruptly stopped and reinjected near the
axis. We label this state !b1". A third state !b2" is deduced
from !b1" by exchanging the roles of impellers 1 and 2. In
bifurcated states!b1" or !b2", the fluid is globally in rota-
tion: the mean angular momentum is not zero.

Finally, three states are observed: the canonical
R! invariant (in a statistical sense) state !s" and two

bifurcated states which break the R! symmetry at " #
0 but are the images one of the other by R!. We detail in
the next section the transitions between these different
states.

Hysteresis loops.—The difference between the two tor-
ques characterizes the different states. We have checked
that, as expected for so high a Reynolds number [9], the
torque T given by one impeller for a given !f; "" does not
depend on Re and scales as T!f; "" # Kp!""#R5!2!f"2
[14], with # the fluid density and Kp a dimensionless
power coefficient.

In Fig. 4, we plot the dimensionless difference !Kp

between the two torques versus " for several configura-
tions. For straight blades, we observe a continuous curve
from " # $1 to " # 1 [Fig. 4(a)] with two transitions
between one- and two-cell flows at " # %0:13. For im-
pellers with curved blades and no baffles on the cylinder
wall, we observe the three states in Fig. 4(b). For " # 0,
we recognize state !s" (!Kp # 0) and both bifurcated
states !b1" and !b2". The state !s" branch is almost reduced
to one point and can be reached only by starting the two

FIG. 2. Dimensionless mean velocity field measured at " # 0
by LDVover 120 integral turnover times by grid point to ensure
good convergence; f # 2 Hz (Re # 1:5& 105). Left: symmet-
ric state !s". Right: bifurcated state !b1". Space coordinates in
units of R. Gray code stands for azimuthal velocity. Isolines are
distant of 0.2 and the gray code saturates in the right map. Bold
lines indicate level zero.
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FIG. 3. Time series of dimensionless torque showing the
bifurcation !s" ! !b2", for " # 0:0204, f # 4:08 Hz. Left:
torque on impeller 1. Right: torque on impeller 2. The bifur-
cation time is the time when the torque on impeller 1 reaches
140% of the mean value for the symmetric state !s".

−1 −0.5 0 0.5 1
−.2

.1

0

.1

.2

∆ 
K

p

(s)

(b
1
)

(b
2
)

−1 0 1
−.4

−.2

0

.2

.4

∆ 
K

p

θ θ

(s)

(b
1
)

(b
2
)

c)
−.06

−.03

0

.03

.06

∆ 
K

p

a) b)

FIG. 4. Dimensionless torque difference !Kp versus " for Re
in the range 2–8& 105. Straight blades (a) exhibit continuous
transition from one-cell flow to two-cells flow for " # %0:13
(vertical lines). Curved blades without (b) or with (c) baffles
along cylinder wall show subcritical transitions between
symmetric/two-cell !s", (!), and bifurcated/one-cell !b1",
!b2" states (').
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Do stable turbulent structures exist in 
ultimate TC flow? 



Structures in high-Reynolds-number TC flow
Re=6000 Re=24000

Re=48000 Re=122000

Stable turbulent vortices 
vanish at Re > 105

Only inner cylinder 
rotation: a=0

Lathrop, Fineberg & Swinney, 
Phys. Rev. A 46, 6390 (1992)
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High state:
8 rolls

Low state: 
6 rolls

Global and local 
measurements: multiple 
turbulent states exist even at 
Re=106 (Ta =1012)
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Summary of 2nd part

Multiple turbulent states exist 
even at Re=106 (Ta=1012)
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Optimal transport is connected to 
the existence of the large-scale 
coherent structures

Huisman, van der Veen, Sun & Lohse, 
Nat. Commu. 5, 3820 (2014) 
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Start with a turbulent 
flow and add Coriolis 

force

(quasi-Keplerian)



Global measurements: Nu(Ta,a)
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u ω
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T
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Compare,RB,&,TC,flow



Analogy RB and TC 
Tt

Tb

Wind determines T(z) profile:
• Thermal BL width λ
• Kinetic BL witdth δ

z

T(z)

Fcent

Wind determines ω(r) profile:
• Vorticity BL width λ
• Kinetic BL witdth δ

Eckhardt, Grossmann, Lohse, 
J. Fluid Mech. 575, 221 (2007)



RB   

Nu=J/Jconductive

TC   

Nuω=Jω/Jω,lam

Conserved: heat flux Conserved: angular velocity flux

Driven by: Driven by:

Exact relation: Exact relation:



Parameter space
Re

inner

Re
outer

η (radius&ra3o)



Shear Reynolds number Res

Res = Us�/⌫

� =
apbp

Rei �Rew
d

Us = Ui � Uw

Res = abp
p

Rei �Rew

Uw

Ui
⇡ 0.05 Wind only small correction!



Shear Reynolds number Res

Res = Us�/⌫

Tacrit =

5 · 108

Flow,in,T3C,is,in,ulImate,
turbulent,TC,state!!!



Transition to ultimate regime
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Boundary layer profiles in TC (by PIV)
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Inner cylinder
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Perfect analogy RB vs TC 
even in ultimate regime,

but mechanical driving in TC much 
more efficient than thermal 

driving in RB
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