

European Research Council

Established by the European Commission

Slide of the Seminar

Phase diagram of turbulent Taylor-Couette flow

Prof. Detlef Lohse

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Phase diagram of turbulent Taylor-Couette flow

Rodolfo Ostilla-Monico Erwin van der Poel **Dennis van Gils** Sander Huismann **Roeland van der Veen** Chao Sun **Roberto Verzicco Siegfried Grossmann Detlef Lohse**

Physics of Fluids University of Twente.

"Drosophila" of Physics of Fluids

-- closed systems -- global balances -- mathematically well defined

Twente Turbulent Taylor-Couette (T³C)

van Gils, Bruggert, Lathrop, Sun & Lohse, Rev. Sci. Instrum. 82, 025105 (2011)

Twente Turbulent Taylor-Couette (T³C)

van Gils, Bruggert, Lathrop, Sun & Lohse, Rev. Sci. Instrum. 82, 025105 (2011)

Twente Turbulent Taylor-Couette (T³C)

Ideal systems to study turbulent boundary layer - bulk interaction

Physics 5, 4 (2012)

Viewpoint

The Twins of Turbulence Research

Friedrich H. Busse Physikalisches Institut der Universität Bayreuth, D-95440 Bayreuth, Germany Published January 9, 2012

> Two new experiments on fluid turbulence have attained conditions needed to establish asymptotic scalings for turbulent transports of heat and angular momentum.

Subject Areas: Fluid Dynamics

A Viewpoint on: Transition to the Ultimate State of Turbulent Rayleigh-Bénard Convection Xiaozhou He, Denis Funfschilling, Holger Nobach, Eberhard Bodenschatz, and Guenter Ahlers *Phys. Rev. Lett.* **108**, 024502 (2012) – Published January 9, 2012

Ultimate Turbulent Taylor-Couette Flow Sander G. Huisman, Dennis P. M. van Gils, Siegfried Grossmann, Chao Sun, and Detlef Lohse Phys. Rev. Lett. 108, 024501 (2012) – Published January 9, 2012

Taylor-Couette: parameter space

Parameters space to fres C

Parameter space of T³C

Experimentally explored parameters ~2010

T³C: parameter space

- Independently rotating cylinders IC 20 Hz, OC 10 Hz
- Max. Reynolds number counter rotation: 3.4 x 10⁶ pure IC rotation: 2.0 x 10⁶ pure OC rotation: 1.4 x 10⁶
- Variable radius ratio $\boldsymbol{\eta}$
- 111 liters of liquid
- 1K/minute heating!!
- 20 kW cooling

Navier-Stokes equation & BCs

Lab frame

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u}$$
$$U_\theta(r_i) = r_i \omega_i$$
$$U_\theta(r_o) = r_o \omega_o$$

Change of frame of reference: Outer cylinder rotation as Coriolis force

$$d = r_o - r_i$$

Outer cylinder rotation as Coriolis force

Navier-Stokes equation in dimensionless form:

$$\partial_t \hat{\mathbf{u}} + \hat{\mathbf{u}} \cdot \hat{\nabla} \hat{\mathbf{u}} + Ro^{-1} \mathbf{e}_z \times \hat{\mathbf{u}} = -\hat{\nabla} \hat{p} + Re_s^{-1} \hat{\nabla}^2 \hat{\mathbf{u}}$$

$$Ro^{-1} = \frac{2\omega_o(r_o - r_i)}{r_i(\omega_i - \omega_o)} \qquad Re_s = \frac{r_i(\omega_i - \omega_o)(r_o - r_i)}{\nu}$$

$$Ta = \frac{1}{4}\sigma(r_o - r_i)^2(r_i + r_o)^2(\omega_i - \omega_o)^2\nu^{-2} \propto Re_s^2$$

This suggests as control parameters:

(fixed η)

Explore control parameters numerically

thanks to Prace project ...

First: Fixed outer cylinder: Ro⁻¹=0 or Re_o=0 Then increase Ta or Re_i

Global flow properties: Angular velocity transfer Nu_ω

Conserved: angular velocity flux

$$J_{\omega} = r^3 \left[\left\langle u_r \omega \right\rangle_{A,t} - \nu \partial_r \left\langle \omega \right\rangle_{A,t} \right]$$

RBTCConserved: heat flux
$$J = \langle u_z \theta \rangle_{A,t} - \kappa \partial_z \langle \theta \rangle_{A,t}$$
Conserved: angular velocity flux $J = \langle u_z \theta \rangle_{A,t} - \kappa \partial_z \langle \theta \rangle_{A,t}$ $J_\omega = r^3 [\langle u_r \omega \rangle_{A,t} - \nu \partial_r \langle \omega \rangle_{A,t}]$ $\mathsf{Nu}=\mathsf{J}/\mathsf{J}_{\mathsf{conductive}}$ $\mathsf{Nu}_\omega = \mathsf{J}_\omega/\mathsf{J}_{\omega,\mathsf{lam}}$ Driven by:Driven by: $Ra = \frac{\beta g \Delta L^3}{\kappa \nu}$ $Ta = \frac{d^2 r_a^6}{r_g^4} \frac{(\omega_1 - \omega_2)^2}{\nu^2}$ Scaling: $Nu \propto Ra^\beta$ Scaling: $Nu_\omega \propto Ta^\beta$

Several transitions in Nu_{ω}

Brauckmann et al., 2013 (DNS)

Several transitions in Nu_{ω}

Ta~2·10⁸ : transition to ultimate regime!

Ta~3·10⁶: very sharp transition

Transition to ultimate regime = Transition of BL from (laminar) Prandtl-Blasius type to (turbulent) Prandtl-von Karman type

 \rightarrow

 $Ta = 5 \times 10^8$

Prandtl

von Karman

Prandtl

Blasius

How do the corresponding flow patterns look like?

Small Ta: laminar Taylor rolls (time dependent)

Transition to turbulent Taylor vortices at Ta $\sim 3 \cdot 10^6$

Turbulent Taylor vortices, but laminar-type BL

> Ta = 5×10^7 Ro⁻¹ = 0 $\eta = 0.714$

Transition to turbulent BL at Ta = 2 x 10⁸: "ultimate turbulence"

> Ta = 4×10^9 Ro⁻¹ = 0 $\eta = 0.714$

Attempt of quantification: axial velocity spread Δ_{U}

$$\Delta_U = \frac{\max_z \hat{u}_\theta(r_{1/2}, z) - \min_z \hat{u}_\theta(r_{1/2}, z)}{\langle \hat{u}_\theta(r_{1/2}, z) \rangle_z}$$

Large scale structures become less beyond transition

BL beyond transition to turbulence: Logarithmic profile develops

<u>NOT</u> the azimuthal velocity $u_{\theta_{0}}$ but the angular velocity ω due to the cylindrical shape

BL beyond transition to turbulence: Logarithmic profile develops

<u>NOT</u> the azimuthal velocity $u_{\theta_{0}}$ but the angular velocity ω due to the cylindrical shape

How do transitions change with outer cylinder rotation $Ro^{-1} \neq 0$?

Expectation:

Co-rotation $\text{Re}_{o} > 0$ or $\text{Ro}^{-1} > 0$: flow stabilization

Weak counter-rotation $\text{Re}_{\circ} < 0$ or $\text{Ro}^{-1} < 0$: flow destabilization!

Strong counter-rotation $\text{Re}_{\circ} < < -|\text{Re}_{\circ}| < 0$ or $\text{Ro}^{-1} < < 0$: flow stabilization again

Global flow properties: $Nu\omega$

Transition to ultimate regime looks universal

Global flow properties: Nu_ω (Ro⁻¹) and "optimal" TC turbulence

R. Ostilla-Monica et al., JFM 747, 1-29 (2014)
Local flow organization: ω-profiles

Local flow organization: ω-profiles

$$\eta = 0.714$$
, Ta = 10¹⁰

Comparison with experiment:

 $Ro^{-1} = 0.2$

co-rotation: gradient in center due to good plume mixing

$$Ro^{-1} = -0.23$$

"Optimal TC": flat profile; less plume mixing $Ro^{-1} = -0.40$

Ra-stable zone at outer cylinder

Local flow organization: $<\omega>_{t,\theta}$ Stronger plumes imply: rolls survive at higher Ta

Rolls = more convective transport = transport optimum!

 $Ta = 10^{10}$

Local flow organization: $<\omega>_{t,\theta}$

 $Ta = 10^{10}$ $\eta = 0.714$,

co-rotation: no axial dependence: weak plumes, good mixing

$Ro^{-1} = -0.22$

"Optimal TC": axial depence, rolls; strong plumes

Rolls at inner cylinder, but Ra-stable zone at outer cylinder

Quantification of roll structure by axial velocity spread Δ_{U}

Good transport at optimal TC due to the surviving roll structure

Largest Δ_{U} in ultimate regime at optimum Ro⁻¹!

Flow features in strongly counterrotating regime

> Ta = 4×10^{9} Ro⁻¹ = - 0.4 $\eta = 0.714$

Position of neutral surface $<\omega(r)>_{t,\theta,z} = 0$

Neutral line migrates inwards with increasing counter-rotation

Summary: Phase diagram

Summary: Phase diagram

Andereck et al.

How does the phase space depend on the radius ratio?

Can one see universal scaling for other values of η ?

 $\gamma = 0.395 \pm 0.03$

Ultimate regime scaling is found for all η !

 $\gamma = 0.38$ also found at $\eta = 0.5$ by Merbold et. al, PRE (2013)

Ostilla, Huisman, Jannink, van Gils, Verzicco, Grossmann, Sun & Lohse, J. Fluid Mech. 747, 1-29 (2014)

When does the transition happen?

Ro⁻¹ = 0 η =0.909, Ta~3·10⁸ – also seen in Ravelet et. al (2011) η =0.5, Ta~10¹⁰ – also seen in Merbold et. al (2013)

similar for larger η -- later for smaller η

Analogy between Ro^{-1} and η : effect on profile

Bulk gradient can be controlled also through η !

Large η has the best transport properties in ultimate regime

Transport from large Ta experiments at different η

Large $\boldsymbol{\eta}$ has the best transport properties in ultimate regime

Increasing $\eta \rightarrow$ more pronounced roll structure \rightarrow better transport

Just as decreasing 1/Ro in the weakly counter-rotating regime

 $Ta = 10^{10}$ Ro⁻¹ = 0

Phase diagram of n-dependence

Preliminary conclusions

(here $\eta = 0.714$)

Startup behavior (inner cylinder) in numerics and experiments

(outer cylinder at rest)

 $\eta = 0.714$ Ro⁻¹ = 0

 $T_a = 10^8$

But this is not the full story yet...

Optimal transport and turbulent structures

Torque sensor

Previously:

A co-axial torque transducer Designed to measure torque

Optimal transport

Measurement procedure

Previously:

for every a we vary Ta and measure Nu_{ω} measure 3 hour per 'a'

Measuring Nu with increasing a

Measuring Nu with increasing a

Measuring Nu with decreasing a

Measuring Nu with increasing/decreasing a

Multiple turbulent states appear around the optimal a

Global transport and internal flow

Multiple turbulent states !!!!

RB flow in classical turbulent state

Multiple states:

continuous switching between two different roll states with different heat transfer properties

 $\delta_k(\mathbf{K})$

Weiss & Ahlers, J. Fluid Mech. 676, 5 (2011)

Rotating spherical Couette flow

Zimmermann, Triana, Lathrop, Phys. Fluids, 23, 065104 (2011) Spontaneous switching between two turbulent states

von Kármán flow with curved blades

Ravelet, Marié, Chiffaudel, Daviaud, Phys. Rev. Lett., 93, 164501 (2004)

Do stable turbulent structures exist in ultimate TC flow?
Structures in high-Reynolds-number TC flow

Re=48000 Re=122000

Only inner cylinder rotation: a=0

Stable turbulent vortices vanish at Re > 10⁵

Lathrop, Fineberg & Swinney, Phys. Rev. A 46, 6390 (1992)

Measure axial dependence

No strong turbulent structures for 0<a<0.17

No stable turbulent structures: a>0.51

Multiple state regime: 0.17<a<0.51

Stable turbulent structures are observed!

Summary of 2nd part

Multiple turbulent states exist even at Re=10⁶ (Ta=10¹²)

Optimal transport is connected to the existence of the large-scale coherent structures

Huisman, van der Veen, Sun & Lohse, Nat. Commu. 5, 3820 (2014)

Start with a turbulent flow and add Coriolis force

$$\eta = \frac{r_i}{r_o} = 0.714$$
$$\Gamma = \frac{L}{r_o - r_i} = 2.03$$

$$Re_s = \frac{r_i(\omega_i - \omega_o)d}{\nu} = 8020$$

$$Ro^{-1} = 1.22$$
 (quasi-Keplerian)

Global measurements: Nu(Ta,a)

Compare RB & TC flow

Analogy RB and TC

Wind determines T(z) profile:

- \bullet Thermal BL width λ
- Kinetic BL witdth δ

Wind determines ω(r) profile:
Vorticity BL width λ
Kinetic BL witdth δ

Eckhardt, Grossmann, Lohse, J. Fluid Mech. 575, 221 (2007) RB

Conserved: heat flux

$$J = \langle u_z \theta \rangle_{A,t} - \kappa \partial_z \langle \theta \rangle_{A,t}$$

Nu=J/J_{conductive}

Driven by:

.

$$Ra = \frac{\beta g \Delta L^3}{\kappa \nu}$$

Exact relation:

$$\tilde{\epsilon}_u = (Nu - 1)RaPr^{-2}$$

$$Pr = \nu/\kappa$$

Scaling: $Nu \propto Ra^{\beta}$

TC

Conserved: angular velocity flux

$$J_{\omega} = r^3 \left[\langle u_r \omega \rangle_{A,t} - \nu \partial_r \langle \omega \rangle_{A,t} \right]$$

$$Nu_{\omega} = J_{\omega}/J_{\omega,lam}$$

Driven by:

$$Ta = \frac{d^2 r_a^6}{r_g^4} \ \frac{(\omega_1 - \omega_2)^2}{\nu^2}$$

Exact relation:

$$\tilde{\epsilon}'_{u} = \tilde{\epsilon}_{u} - \tilde{\epsilon}_{u,lam}$$

$$= (Nu_{\omega} - 1)Ta \ \sigma^{-2}$$

$$\sigma = (1 + \eta)^{4} / (2\eta)^{2}$$
Scaling: $Nu_{\omega} \propto Ta^{\beta}$

Parameter space

Shear Reynolds number Res

$$Re_s = U_s \delta / \nu$$
 $Re_s = a_{bp} \sqrt{Re_i - Re_w}$

$$\delta = \frac{a_{pb}}{\sqrt{Re_i - Re_w}}d$$

$$U_s = U_i - U_w$$

$$\frac{U_w}{U_i} \approx 0.05$$

Wind only small correction!

Shear Reynolds number Res

Transition to ultimate regime

5 x 10⁸

Boundary layer profiles in TC (by PIV)

Ostilla, Stevens, Grossmann, Verzicco, Lohse arXiv:1207:2290 (2012)

Perfect analogy RB vs TC even in ultimate regime,

but mechanical driving in TC much more efficient than thermal driving in RB

